Robust Principal Component Analysis
Candès et al, *JACM*, 2011

Presented by Lu Meng

Jan 30, 2014
Motivation

\[M = L_0 + N_0 \]

with \(L_0 \) low-rank and \(N_0 \) a small perturbation matrix

- Classical Principal Component Analysis (PCA) \(^1\)

\[
\min_L \| M - L \|_2 \\
\text{subject to } \text{rank}(L) \leq k
\]

- sensitive to corrupted measurements

- none of current robustifying approaches yields a polynomial-time algorithm

\(^1\)\(\| M \|_2 = \max_i \sigma_i(M) \)
Robust PCA

\[M = L_0 + S_0 \]

with \(L_0 \) low-rank and \(S_0 \) sparse

Principal Component Pursuit (PCP) \(^2\)

\[
\min_{L,S} \quad ||L||_* + \lambda ||S||_1 \\
\text{subject to} \quad L + S = M
\]

\(^2\) \(||M||_* = \sum_i \sigma_i(M) \)
\(^3\) \(||M||_1 = \sum_{i,j} |M_{ij}| \)
Applications

- Video Surveillance
- Face Recognition
- Latent Semantic Indexing
- Ranking and Collaborative Filtering
Identifiability and Uniqueness

- assumptions for identifiable PCP
 - L_0 is not sparse
 - sparsity pattern of the sparse component is selected uniformly random
- no tuning parameter: $\lambda = 1/\sqrt{\max(n_1, n_2)}$ is universal
- conditions for unique optimal solution
- can be solved by tractable convex optimization and efficient algorithms
Algorithms

- For small problem sizes: off-the-shelf tools
- Large size: augmented Lagrange multiplier (ALM) method

\[
l(L, S, Y) = \|L\|_* + \lambda \|S\|_1 + \langle Y, M - L - S \rangle + \frac{\mu}{2} \|M - L - S\|_F^2
\]

repeatedly setting \((L_k, S_k) = \arg\min_{L, S} l(L, S, Y_k)\) and then updating the Lagrange multiplier matrix via

\[
Y_{k+1} = Y_k + \mu (M - L_k - S_k).
\]

- \(\arg\min_S l(L, S, Y) = S_{\lambda\mu^{-1}}(M - L + \mu^{-1}Y)\)
- \(\arg\min_L l(L, S, Y) = D_{\mu^{-1}}(M - S + \mu^{-1}Y)\)

4. \(\langle X, Y \rangle = \text{trace}(X^* Y)\)
5. \(\|X\|_F^2 = \langle X, X \rangle\)
6. \(S_\tau[x] = \text{sgn}(x) \max(|x| - \tau, 0)\)
7. \(D_\tau(X) = US_\tau(\Sigma)V^*, \text{ where } X = U\Sigma V^*\)
Algorithm 1: PCP by Alternating Directions

initialize: $S_0 = Y_0 = 0, \mu > 0$

while not not converaged do

compute $L_{k+1} = D_{\mu^{-1}}(M - S_k + \mu^{-1} Y_k)$;
compute $S_{k+1} = S_{\lambda \mu^{-1}}(M - L_{k+1} + \mu^{-1} Y_k)$;
compute $Y_{k+1} = Y_k + \mu(M - L_{k+1} - S_{k+1})$

output: L, S
Examples

- surveillance video: PCP vs a state-of-the-art technique
- removing shadows from face images